
UNIVERSITA' DEGLI STUDI - L'AQUILA

DIPARTIMENTO DI INFORMATICA

Compito di Reti di Calcolatori 06-09-2010

- 1. Spiegare il problema degli "Indiani": ovvero Little-Endian verso Big-Endian (2 punti)
 - Big-endian e little-endian sono due metodi differenti usati dai calcolatori per immagazzinare in memoria dati di dimensione superiore al byte (es. word, dword, qword).
 La differenza tra i due sistemi è data dall'ordine con il quale i byte costituenti il dato da immagazzinare vengono memorizzati:
 - big-endian è la memorizzazione che inizia dal byte più significativo per finire col meno significativo; è utilizzata dai processori Motorola e nei protocolli usati in Internet
 - little-endian è la memorizzazione che inizia dal byte meno significativo per finire col più significativo; è utilizzata dai processori Intel
- 2. Con riferimento alla figura seguente, riempire i campi mancanti : (4 punti)

3. Data la rete di classe A [11.0.0.0], 7 bits vengono usati per il subnetting ! Basandosi su questa informazione completare la tabella seguente per la prima e la terza subnet disponibile. (4 punti)

Subnet Mask	Subnet Network Address	Subnet Broadcast Address	Primo indirizzo di host disponibile nella Subnet	Ultimo indirizzo di host disponibile nella Subnet
255.254.0.0	11.0.0.0	11.1.255.255	11.0.0.1	11.1.255.254
255.254.0.0	11.4.0.0	11.5.255.255	11.4.0.1	11.5.255.254

4. Un datagramma IP con ID=11111, composto complessivamente di 900 bytes, arriva ad un router che è connesso ad un DL layer con MTU da 300 bytes. Il router frammenta il datagramma nel seguente modo: (4 punti)

	Frammento 1	Frammento 2	Frammento 3	Frammento 4
Num di bytes	280	280	280	40
ID	11111	11111	11111	11111
Offset	0	35	70	105
MF FLAG	1	1	1	0

UNIVERSITA' DEGLI STUDI - L'AQUILA

DIPARTIMENTO DI INFORMATICA

	0,1,2,3	4,5,6,7				22222233 45678901	
	Version	IHL	Type of Service		Total I	Length	
-	Identification			Flags Fragment Offset			
IP Header	Time	to Live	Protocol = 6		Header C	Checksum	
IP H			Source	Address			
	Destination Address						
_{	Options Padding						
25-32		Sourc	e Port	Destination Port			
ТСР			Sequence	e Numbe	r		
	Acknowledgment Number						
	Data Offset		U A P R S F R C S S Y I G K H T N N	Window			
		Chec	ksum	Urgent Pointer			
	>		TCP Options			Padding	
	>		TCP	Data		}	

5. Supponete di aver catturato II seguente pacchetto IP che trasporta un segmento TCP: (16 punti)

4500	00C7	FF53	0000	8006	3D5E	B87A	3270
B87A	C3D0	0017	1074	218F	810E	87CA	6C8C
6012	4000	488A	0000	0204	0200		

- a) Quale è l'indirizzo sorgente e destinazione (in notazione decimale puntata)?
 - source address = b87a 3270 (184.222.50.112).
 - destination address = b87a c3d0 (184.222.195.208).
- b) Il pacchetto è stato frammentato ? E' frammentabile ?
 - NO
 - SI
- c) Quale è la porta sorgente e destinazione (in decimale)?
 - source port = 0x0017 = 23. Questa è la well known port del servizio telnet.
 - destination port = 0x1074 = 4212. Questa è la client port.
- d) Quale è la next sequence number (in hex) attesa dal mittente di questo datagramma?
 - La next sequence number attesa è quella di cui si fa l'ACK ovvero 87CA 6C8C.
- e) Quale è il prossimo byte atteso nella direzione opposta?
 - Il mittente sta specificando un sequence number di 218f 810E. Pertanto 218f810F (+1) sarà il prossimo byte atteso.
- f) Ci sono options in questo header? Quanti bytes occupano?
 - L' header length è specificata dai primi 4 bits del byte 0x60 (6): header length è di 6 words o 24 bytes (4 bytes più di un standard TCP header) ovvero, 4 bytes di options.
- g) Quale è la current window size che il mittente del datagramma è in grado di accettare?
 - La window size notificata dal mittente è 0x4000 ovvero 16.384 bytes.
- h) Che tipo di segmento è questo ? Cioè, è parte di una initiation handshake, termination handshake, o un regolare segmento di dati ?
 - Bisogna guardare ai 6 bit del control field rappresentato dal byte 0x12. Questo valore indica che il SYN bit è settato e l'ACK bit è settato. Il solo momento in cui questa combinazione occorre è nel secondo step di una three way handshake: SYN-ACK.